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Abstract Eukaryotic cells can migrate using different modes, ranging from amoeboid-like, during6

which actin filled protrusions come and go, to keratocyte-like, characterized by a stable morphology7

and persistent motion. How cells can switch between these modes is not well understood but8

waves of signaling events are thought to play an important role in these transitions. Here we9

present a simple two-component biochemical reaction-diffusion model based on relaxation10

oscillators and couple this to a model for the mechanics of cell deformations. Different migration11

modes, including amoeboid-like and keratocyte-like, naturally emerge through transitions12

determined by interactions between biochemical traveling waves, cell mechanics and morphology.13

The model predictions are explicitly verified by systematically reducing the protrusive force of the14

actin network in experiments using Dictyostelium discoideum cells. Our results indicate the15

importance of coupling signaling events to cell mechanics and morphology and may be applicable16

in a wide variety of cell motility systems.17

18

Introduction19

Eukaryotic cell migration is a fundamental biological process that is essential in development20

and wound healing and plays a critical role in pathological diseases, including inflammation and21

cancer metastasis Ridley et al. (2003); Roussos et al. (2011);Montell (2003). Cells can migrate using22

a variety of modes with a range of corresponding morphologies. The repeated extensions and23

retractions of pseudopods in amoeboid-like cells, for example, result in a constantly changing24

morphology and random migration while keratocyte-like cells have a stable and broad actin-rich25

front, a near-constant shape, and move in a persistent fashion Webb and Horwitz (2003); Keren26

et al. (2008). Furthermore, many cells do not have a unique migration mode and can switch27

between them, either as a function of the extracellular environment or upon the introduction of a28

stimulus Paul et al. (2017); Bergert et al. (2012); Charras and Sahai (2014); Liu et al. (2015); Petrie29

and Yamada (2016);Miao et al. (2017). This plasticity is currently poorly understood and is thought30

to play a role in pathological and physiological processes that involve cell migration, including31

cancer metastasis Friedl and Alexander (2011).32

A key step in cell migration is the establishment of an asymmetric and polarized intra-cellular33

organization where distinct subsets of signaling molecules, including PAR proteins, Rho family34

GTPases and phosphoinositides, become localized at the front or back of the cell Jilkine and35

Edelstein-Keshet (2011); Rameh and Cantley (1999); Goldstein and Macara (2007); Raftopoulou36

and Hall (2004); Rappel and Edelstein-Keshet (2017). In the absence of directional cues, this sym-37

metry breaking can be a spontaneous and dynamic process with waves of cytoskeletal and signaling38

components present on the cell cortex Vicker (2002); Weiner et al. (2007); Whitelam et al. (2009);39

Case andWaterman (2011); Gerisch et al. (2012); Allard andMogilner (2013); Gerhardt et al. (2014);40

Barnhart et al. (2017). Addressing this spontaneous symmetry breaking and the role of waves have41

generated numerous theoretical studies Jilkine and Edelstein-Keshet (2011);Meinhardt (1999); Ot-42
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suji et al. (2007); Csikász-Nagy et al. (2008); Beta et al. (2008);Mori et al. (2008); Xiong et al. (2010);43

Knoch et al. (2014);Miao et al. (2017). Most models, however, study cell polarity in the context of44

biochemical signaling and do not consider cell movement or deformations originated from cell45

mechanics. This may be relevant for nonmotile cells including yeast Park and Bi (2007); Slaughter46

et al. (2009) but might not be appropriate for motile cells where the coupling between intracellular47

pathways and cell shape can be crucial in determining the mode of migrationCamley et al. (2013,48

2017). Furthermore, most of these models only focus on one specific migration mode and do not49

address transitions between them. Therefore, it remains an open question how cell mechanics,50

coupled to a biochemical signaling module, can affect spontaneous cell polarity and can determine51

transitions between cell migration modes.52

Here we propose a novel model that couples an oscillatory biochemical module to cell mechanics.53

Our choice of the biochemical model was motivated by recent findings that the self-organized54

phosphatidylinositol (PtdIns) phosphate waves on the membrane of Dictyostelium cells exhibit55

characteristics of a relaxation oscillator Arai et al. (2010). Our model is able to generate amoeboid-56

like, keratocyte-like, and oscillatory motion by varying a single mechanical parameter, the protrusive57

strength, without altering the biochemical signaling pathway. We determine how the transitions58

depend on these parameters and we show that keratocyte-like motion is driven by an emergent59

traveling wave whose stability is determined by the mechanical properties of the cell. Finally, we60

experimentally obtain all three migration modes in wild-type Dictyostelium discoideum and explicitly61

verify model predictions by reducing the actin protrusive force using the drug latrunculin B. Our62

model provides a unified framework to understand the relationship between cell polarity, motility63

and morphology determined by cellular signaling and mechanics.64

Models and results65

Model66

Our two-dimensional model is composed of two modules: a biochemical module describing the

dynamics of an activator-inhibitor system which works in the relaxation oscillation regime, and a

mechanical module that describes the forces responsible for cell motion and shape changes (Fig.1a).

Our biochemical module consists of a reaction-diffusion system with an activator A (which can be
thought of as PtdIns phosphates and thus upstream from newly-polymerized actin Gerhardt et al.
(2014);Miao et al. (2019)) and an inhibitor R (which can be thought of as the phosphatase PTEN).
This activator and inhibitor diffuse in the cell and obey equations that reproduce the characteristic

relaxation oscillation dynamics in the PtdIns lipid system Arai et al. (2010); Matsuoka and Ueda
(2018); Fukushima et al. (2018):

)A
)t

= DA∇ ⋅ (∇A) + F (A) − G(R)A + �1(t), (1)

)R
)t

= DR∇ ⋅ (∇R) +
c2A − c1R

�
+ �2(t), (2)

where DA and DR are the diffusion coefficients for A and R, respectively. In these expressions,67

F (A) is the self-activation of the activator with a functional form that is similar to previous studies:68

F (A) = [kaA2∕(K2
a + A

2) + b](At − A) Miao et al. (2017). The activator is inhibited by R through the69

negative feedback G(R) = d1 + d2R while R is linearly activated by A (see Methods and Materials).70

The timescale of the inhibitor � is taken to be much larger than the timescale of the activator, set71

by ka: � ≫ k−1a . Finally, to ensure robustness to stochasticity, we add uniformly distributed spatial72

white noise terms ⟨�i(r, t)�j(r′, t′)⟩ = ��ij�(r − r′)�(t − t′).73

Nullclines for this system are shown in Fig.1b, where we have chosen parameters such that74

the fixed point is unstable and the system operates in the oscillatory regime. As a result of the75

separation of timescales for A and R, the dynamics of A and R are characteristic of a relaxation76

oscillator (inset of Fig.1b): A reaches its maximum quickly, followed by a slower relaxation phase77

during which the system completes the entire oscillation period.78
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To generate cell motion, we couple the output of the biochemical model to a mechanical module79

which incorporates membrane tension and protrusive forces that are proportional to the levels of80

activator A and normal to the membrane, similar to previous studies Shao et al. (2010, 2012) (see81

Methods and Fig.1a). To accurately capture the deformation of the cell in simulations, we use the82

phase field method Shao et al. (2010); Ziebert et al. (2011); Shao et al. (2012); Najem and Grant83

(2013); Marth and Voigt (2014); Camley et al. (2017); Cao et al. (2019). Here, an auxiliary field � is84

introduced to distinguish between the cell interior (� = 1) and exterior (� = 0), and the membrane85

can be efficiently tracked by the contour � = 1∕2. Coupling this field to the reaction-diffusion86

equations can guarantee that no-flux boundary conditions at the membrane are automatically87

satisfied Kockelkoren et al. (2003). The evolution of the phase-field is then determined by the force88

balance equation:89

�
)�
)t

= �M(A)|∇�| −
�H(�)
���

, (3)

where � is a friction coefficient, � is the boundary width of the phase field, and H(�) is a Hamil-90

tonian energy including the membrane tension, parameterized by  and area conservation (see91

Methods and Materials). The first term on the right hand side describes the actin protrusive force,92

parameterized by �, and acts on the cell boundary since |∇�| is non-zero only in a region with width93

�. M formulates the dependence of the protrusive force on the activator levels and is taken to be94

sigmoidal: M(A) = An∕(An + An
0), where n is a Hill coefficient. As initial conditions, we use a disk with95

radius r with area S = �r2 and set A = R = 0. Default parameter values for our model are estimated96

from experimental data and given in Table 1.97

Cell motion is quantified by computing the velocity of the center of mass of the cell. Furthermore,98

we record the trajectory of the center of mass and compute its average curvature ⟨�⟩ = ∫ �(l)dl∕L,99

where k(l) is the local curvature, and L is the total length of the trajectory. These quantities can be100

used to distinguish between different migration modes (see Results and Methods and Materials).101

Computational results102

We first examine the possible migration modes as a function of the protrusive strength � for fixed103

area S, parametrized by the radius r of the disk used as initial condition, and default parameters.104

As shown in Fig.2, there are three distinct cell migration modes. When � is small, activator waves105

initiate in the interior and propagate to the cell boundary. However, the protrusive force is too106

small to cause significant membrane displacement, as also can be seen from the trajectory in Fig.2b.107

Consequently, the cell is almost non-motile and the activator and inhibitor field show oscillatory108

behavior (Fig.2a I &b and Video 1).109

As � increases, an activator wave that reaches the boundary can create membrane deformations,110

leading to the breaking of spatial homogeneity. This wave, however, is competing with other111

traveling waves that emerge from random positions. Consequently, the cell exhibits transient112

polarity, moves in constantly changing directions, and displays amoeboid-like migration (Fig.2a II &b113

and Video 2).114

When � is increased further, protrusions generated by activator waves reaching the cell boundary115

become even larger. As a result of the coupling between the waves and membrane mechanics, a116

single traveling wave will emerge within the cell, characterized by a broad and stationary band of117

high levels of activator. This wave pushes the membrane forward in a persistent direction with118

constant speed and the cell will adopt a steady keratocyte-like morphology, even in the presence of119

noise (Fig.2a III &b and Video 3).120

The transition from oscillatory dynamics to amoeboid-like unstable cell motion can be under-121

stood by considering the coupling between the traveling waves and membrane motion. In Methods122

and Materials we show that these traveling waves, that emerge naturally in systems of relaxation123

oscillators Kopell and Howard (1973); Keener (1980); Murray (2002) are stable as long as the acti-124

vator front can “outrun" the inhibitor’s spreading speed. This condition results in a minimal wave125

speed c
min
that depends on DR and � (see Methods and Materials ). The activator wave pushes126
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the membrane outward and will keep propagating as long as the boundary can keep up with the127

wave speed. In our model, the membrane is pushed outward by a protrusive force resulting in128

a speed approximately given by vb ∼ ��∕�, where � is the boundary-averaged value ofM(A), that129

depends on mechanical parameters and is independent of biochemical parameters (see Methods130

and Materials and Fig2–Figure Supplement 1). This implies that if the speed of the membrane is131

less that the minimum speed of the activator wave (vb < cmin) there will be no significant membrane132

motion. On the other hand, when vb > cmin, a traveling wave can be selected by matching the wave133

speed and the boundary speed:134

c = vb ∼
��
�
. (4)

The above equation indicates that when � > �c
min
∕�, the cell will break its symmetric shape through135

traveling waves that deform the membrane.136

In simulations, the critical value of �, �c,1, for which the oscillating cell becomes amoeboid-like137

can be determined by slowly increasing � and computing the center-of-mass speed of the cell,138

vCM . Oscillatory cells are then defined as cells with a vanishing center of mass speed (see also139

Methods and Materials). The transition between oscillatory and amoeboid-like cells is shown in140

Fig.2c where we plot vCM as a function of protrusion strength � for cells with as initial condition141

either homogeneous solutions in A and R that are perturbed with noise (blue curve) or asymmetric142

distributions of A and R (red curve). For both initial conditions, the speed shows a subcritical143

bifurcation at a critical value of �c,1, above which a non-zero cell speed emerges. Furthermore, these144

simulations reveal that, as argued above, �c,1 depends on both DR and � (Fig2– Figure Supplement145

2).146

Once a traveling wave is able to generate membrane deformations, why does it not always147

result in stable, keratocyte-like motion with a single traveling wave in the cell’s interior? Notice148

that in our model, if the spatial extent between the cell front and the back, d, is larger than the149

wavelength of the activator wave � (schematically shown in Fig.1a), a new wave will be generated150

behind the original one. This wavelength can be approximated by � ≈
√

2D� (where we have151

taken DA = DR = D for simplicity) such that stable keratocyte-like cells driven by a single wave are152

only possible when d < �. This front-back distance, however, depends on the balance between153

protrusive force and membrane tension at the traveling wave’s lateral ends. Increasing values154

of � result in a broader front and therefore smaller values of d (Fig.2 d). As a consequence, as155

� is increased, waves propagating within the cell eventually become stable, resulting in a single,156

propagating wave and a cell with a keratocyte-like morphology. For a discussion on the role of157

tension we refer to Methods and Materials and Fig2– Figure Supplement 3.158

To distinguish between keratocyte-like and amoeboid-like cells we compute the average cur-159

vature of the center of mass trajectory ⟨�⟩ (see Methods and Materials). For keratocyte-like cells,160

which move in a more persistent way, ⟨�⟩ will take on small values while for amoeboid-like cells ⟨�⟩161

will become large. This is shown in Fig. 2e where we plot ⟨�⟩ as a function of protrusion strength162

(red curve). The transition from unstable to stable polarity, and therefore keratocyte-like motion,163

happens smoothly in a narrow region of � and the critical value �c,2 can be defined as the point164

for which ⟨�⟩ = 0.02�m−1. Alternatively, and as in the experiments, we can compute the standard165

deviation of angles of trajectory points, taken at fixed intervals (see Methods and Materials). As illus-166

trated by the blue curve in Fig. 2e, this standard deviation also decreases rapidly as � is increased167

and thus provides an alternative method to distinguish the two cell migration modes.168

Our analysis also implies that for equal protrusive strengths larger cells will be less stable. These169

cells have a larger area which allows for the nucleation of a new wave front which destabilizes the170

cell. For equal size cells, those with a smaller protrusion strength would have a larger font-back171

distance (Fig. 2d) and therefore more space to generate a new wave, potentially destabilizing them.172

Consequently, decreasing the protrusion would destabilize larger keratocyte-like cells and only173

smaller keratocyte-like cells will remain.174

From the above analysis, it becomes clear that the protrusive strength and size of initial disk,175
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and thus cell area, are critical parameters in determining the stability of the polarity established176

by interactions between traveling waves and moving boundaries. In simulations, we therefore177

determine the phase diagram in the (�, S) space by systematically varying the initial radius (with178

step size 0.5 �m) and protrusive force (with step size 0.25 pN) while keeping all other parameters179

fixed (Fig.2 f). We constrain our cell area to be within the physiologically relevant range with a180

initial radius between r = 4�m and r = 8�m, corresponding to an area between S ∼ 50�m2 and181

S ∼ 200�m2 (see Methods and Materials and Fig2–Figure Supplement 4 for an extension of the182

phase space to larger values of r). As stated above, there are three distinct phases, corresponding to183

the three different cell migration modes of Fig.2a. The transition from oscillatory to amoeboid-like184

motility occurs at small � and is independent of cell size, as predicted in Eq.(4). The transition from185

unstable to stable polarity is quantified by �c,2, which increases for increasing values of r and thus S.186

The latter transition depends on parameters that affect either d or � (Fig.2 g). For example, we187

can reduce the timescale of the inhibitor � to half the value reported in Table S1 (�0) which leads188

to a decrease of � and should lead to larger values of �c,2. Secondly, for increasing values of the189

membrane tension the transition occurs for larger values of �. This can be understood by realizing190

that an increase in the membrane tension will reduce the cell’s deformability. Therefore, the191

curvature of the cell’s front will decrease, which will increase the front-back distance and thus the192

critical protrusion strength. Finally, increasing value of the friction coefficient � should, according to193

Eq.4, lead to a decrease in the membrane speed. Since the biochemical wave speed c is unchanged,194

the transition from amoeboid-like to keratocyte-like motion should occur for larger values of �. All195

those predictions are confirmed in our simulations, as shown in Fig.2 g. Importantly, we find the196

speed of the keratocyte-like cell in all the situations is linearly dependent on �∕�, and independent197

of other parameters, as predicted by Eq. 4 (Fig.2 h).198

In summary, our model predicts that a sufficient decrease of � can destabilize keratocyte-like199

cells, resulting in cells that employ amoeboid-like migration, and can transform keratocyte-like and200

unstable cells into oscillatory cells. Furthermore, for decreasing protrusive force, the keratocyte-like201

cells should have a reduced speed and cell size.202

Experimental Results203

To test our model predictions, we carry out experiments using wild-type Dictyostelium cells (see204

Methods and Materials). In vegetative food-rich conditions, during which food is plentiful, most205

cells migrate randomly using amoeboid-like motion. Starvation triggers cell-cell signaling after206

which cells become elongated and perform chemotaxis. However, we found that starving cells for207

6h at sufficiently low density is enough to prevent cell-cell signaling. Under these conditions, the208

majority of cells still moves as amoeboid-like cells but a significant fraction, approximately 20-50%,209

migrates in a keratocyte-like fashion (Video 4). These cells adopt a fan-shaped morphology and210

move unidirectionally, as was also observed in certain Dictyostelium mutants Asano et al. (2004).211

Employing these low density conditions, we can alter the cell’s protrusive force by interrupting actin212

polymerization using the drug latrunculin B, an inhibitor of actin activity. Our model predicts that as213

the concentration of latrunculin increases, keratocyte-like cells are more likely to switch to unstable214

or oscillatory cells. Furthermore, the size and speed of the remaining keratocyte-like cells should215

decrease.216

A snapshot of starved cells is shown in Fig. 3a, before (left panel) and after exposure to217

latrunculin (right panel). Higher magnification plots of the amoeboid-like cells (top two panels) and218

of a keratocyte-like cell are shown to the right. In these panels, the actin distribution is visualized219

with the fluorescent marker limE-GFP. As can be seen by comparing the snapshots in Fig. 3a, the220

number of keratocyte-like cells decreases after the exposure of latrunculin. This decrease is due221

to keratocyte-like cells becoming unstable and switching to the amoeboid-like mode of migration.222

We quantify the percentage of keratocyte-like cells, as well as the speed and shape, as a function223

of time for different concentrations of latrunculin for at least 100 cells. As shown in Fig. 3b, the224

percentage of keratocyte-like cells decreases upon the introduction of latrunculin. Furthermore,225
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this decrease becomes more pronounced as the concentration of latrunculin is increased (inset Fig.226

3b), consistent with our model prediction.227

To further verify the model predictions, we quantify the cell area S and cell speed for the228

keratocyte-like cells. Both the area (fig.3c) and speed (fig.3d) decrease after the introduction of229

latrunculin. This decrease becomes more significant for larger concentrations of latrunculin, again230

consistent with our predictions. The effect of latrunculin is further shown in Fig3–Figure Supplement231

1 where we plot the speed of the amoeboid and keratocyte-like cells for different areas as a function232

of latrunculin concentration. Speed decreases for increasing latrunculin concentration, indicating233

that the protrusive force is reduced in the presence of latrunculin.234

Finally, our model predicts that, with a relaxed area conservation, a sufficient reduction of235

protrusive strength results in the appearance of oscillatory cells with oscillating basal area size236

(Fig2–Figure Supplement 5). Indeed, after the exposure to latrunculin, a small fraction of cells237

are observed to display oscillatory behavior characterized by repeated cycle of spreading and238

contraction, resulting in a basal surface area that oscillates, similar to the engineered oscillatory239

cells ofMiao et al. (2017) (Fig. 3e). Cell tracking reveals that these cells originate through a transition240

from the unstable, amoeboid-like state to the oscillatory state. Interestingly, the observed oscillation241

in surface area is often very regular (Fig. 3e). We find that the average period of different cells is242

largely independent of the latrunculin concentration, ranging from 6.2 ± 0.9 min for 1 �M to 6.6 ±243

0.9 min for 4 �M, while the coefficient of variation, defined as the ratio of the standard deviation244

and the mean, for single cell periods varies between 0.31 ± 0.12 min (1 �M) and 0.20 ± 0.10 min (4245

�M; Fig3–Figure Supplement 2).246

Our experimental results can be summarized by identifying the migration mode of cells for247

different values of the cell area and the latrunculin concentration, thus constructing a phase diagram248

that can be compared to the computational one (Fig. 2f). Due to cell-to-cell variability, we find a249

distribution of migration modes for each point in this phase diagram. This is shown in Fig. 3f where250

we plot, using a separate color scale for each migration mode, the percentage of keratocyte-like,251

amoeboid-like, and oscillatory mode of migration for different values of the cell area and latrunculin252

concentration. The resulting experimental phase diagrams agree well with the computational phase253

diagram presented in Fig. 2f. Without latrunculin, many cells migrate using the keratocyte-like254

mode. Exposing cells to latrunculin, and thus reducing the protrusive force, results in a shift from255

keratocyte-like towards amoeboid-like cells. Furthermore, for the maximum value of the latrunculin256

concentration, almost all keratocyte-like cells are destabilized and a small proportion of cells (≈ 9%)257

are in the oscillatory mode. Thus, our experimental results are in good agreement with the model258

predictions.259

Discussion260

In this paper, we propose a simple but unified paradigm to understand cell migration and cell261

morphology. As in previous modeling studies Nishimura et al. (2009, 2012); Miao et al. (2017,262

2019), our model displays different migration modes. These modes can be induced by varying the263

protrusive force which is attractive since the switching of these modes can occur on a timescale that264

is shorter than gene expression timescales (Fig. 3b), suggesting that a single model with conserved265

components should be able to capture all three modes. Importantly, our model predictions are266

verified in experiments using wild-type Dictyostelium cells which, under our conditions, exhibit all267

three migration modes. These experiments show that upon the introduction of latrunculin the268

speed of keratocyte-like cells decrease. This is perhaps not surprising since latrunculin inhibits actin269

polymerization which can be expected to result in smaller cell speeds. Our experiments also show,270

however, that the area of the moving keratocyte-like cells decreases in the presence of latrunculin.271

In addition, and more importantly, our experiments demonstrate that transitions between the272

migration modes can be brought about by reducing the protrusive strength of the actin network.273

These non-trivial effects of latrunculin are consistent with the predictions of our model and are also274

captured in our experimental phase diagrams (Fig. 3f).275
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Key in our model is the coupling of traveling waves generated through biochemical signaling276

and cell mechanics. Our main finding is that cell migration is driven by the traveling waves and277

that persistent propagation of these waves result in keratocyte-like cells with a broad and stable278

front. This stable front is only present if the front-back distance is smaller than the biochemical279

wavelength. Reducing the protrusive strength results in a larger front-back distance, resulting280

in unstable, amoeboid-like migration. For even smaller values of the protrusive strength, cells281

display oscillatory behavior. For these values, the membrane speed is smaller than the minimum282

biochemical wave speed.283

Several recent computational studies have addressed switching between different migration284

modes. For example, Nishimura et al. have presented a model that includes actin and cortical285

factors, control factors of actin polymerization, and have shown that feedback between cell shape286

deformations and the spatially distributed control factors can result in amoeboid-like motion287

Nishimura et al. (2009, 2012) . Furthermore, changing the rate of polymerization as well as the288

threshold of polymerization in the model can result in transitions between amoeboid-like and289

keratocyte-like cells Nishimura et al. (2009, 2012). In addition, Miao et al. have proposed a model290

that can generate all three migration modes observed in experiments of engineered Dictyostelium291

cellsMiao et al. (2017, 2019). This model contains an excitable network and the different migration292

modes can be generated by altering the threshold of this network. Our current model is distinct293

from these studies in several ways. First, the migration mode transitions in our model are induced294

by the mechanical module with the same biochemical components, while in other models the295

transitions are generated by changing the dynamics of the biochemical signaling pathways from, e.g.,296

excitable to oscillatoryMiao et al. (2017), or the threshold of actin polymerization Nishimura et al.297

(2009, 2012). In addition, the biochemical module in our model is much simpler and only contains298

an activator and inhibitor while the model ofMiao et al. (2017) requires additional feedback from299

a postulated polarity module. Of course, our work does not exclude the existence of this polarity300

module but it shows that we can explain the observed cell morphologies and movement within a301

minimal framework of coupling two biochemical components and cell mechanics. Second, based302

on the earlier measurements of Arai et al. (2010), our model assumes that the biochemical module303

operates as a relaxation oscillator. As a result, and in contrast to Nishimura et al. (2009, 2012),304

our model is able to generate oscillatory cells. This is also in contrast to the model of Miao et al.305

(2017), which uses nested excitable networks. Note however, that in our model we can tune the306

negative feedback to make the biochemical module operate in the excitable regime. We have307

explicitly verified that qualitatively similar migration modes and transitions are observed if our308

model is excitable (Fig2–Figure Supplement 6). In the excitable version of our model, however, the309

oscillations in the non-motile mode are, in general, less regular and periodic than the ones obtained310

in the relaxation oscillator version. From the statistical features of the periods obtained from311

oscillatory cells in experiments, it is likely that the cellular signaling dynamics can be most accurately312

described by relaxation oscillation models. As a final distinction, we point out that the biochemical313

and mechanical module in the model ofMiao et al. (2017) are solved separately on a 1D ring while314

in Nishimura et al. (2009, 2012), the biochemical reactions are coupled to cell deformation in a315

lattice model. As a result, the keratocyte-like cells inMiao et al. (2017) display constant excitations316

at the front that travel along the membrane in the lateral direction rather than stationary activator317

bands, as observed in the experiments and in our model (Fig.3a(v)). Furthermore, the keratotyte-like318

cells in Nishimura et al. (2009, 2012) have similar shape to the ones generated in our model but319

have less persistent directionality.320

Several future extensions of our study are possible. First, our current study is restricted to two321

dimensional geometries while actual cell motion is of course three dimensional. Extending our322

model to 3D would allow us to relax the area conservation constraint and should result in cells for323

which the basal surface area show clear oscillations that are coupled to extensions away from the324

surface (Fig2–Figure Supplement 5). Second, we have ignored fluid flow within the cytosol, which325

may play a role in signaling and polarity formation. Including fluid flow, which adds considerable326
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computational complexity to the model Shao et al. (2012), will be part of future extensions. Third, it327

should be possible to couple the biochemical model to upstream chemotaxis pathways, allowing it328

to address directedmotion or more complex pathways. In addition, it should be possible to consider329

multiple parallel and excitable pathways which may regulate cell motility in chemotaxis Tanabe330

et al. (2018) and models with more molecular details Matsuoka and Ueda (2018); Fukushima331

et al. (2018). Fourth, it would be interesting to compare wave dynamics obtained in our model332

with waves observed in giant Dictyostelium cells Gerhardt et al. (2014). In addition, alternative333

biochemical models in which parameters determine the qualitatively different dynamics can be334

studied Miao et al. (2017). Furthermore, our study predictions may also be verified in other cell335

types. For example, we predict that overexpression of actin in fast moving cells should result in cells336

migrating with keratocyte-like morphologies while disturbing actin polymerization in keratocytes337

could lead to unstable migration. Finally, it would be interesting to determine how the feedback338

between mechanical and biochemical modules can potentially help understand other cell migration339

processes.340
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Methods and Materials344

Full model345

Our model for the cell boundary and cell motion is detailed in earlier studies Shao et al. (2010,346

2012); Camley et al. (2014). Briefly, we model the cell boundary as an interface with tension, driven347

in this study by activator A at the front. Cell motion obeys the overdamped force balance equation348

F act+F mem+F area+F fric = 0where F act is the active force proportional to the activator concentration;349

F mem describes themembrane tension (line tension since we aremodeling a 2D cell); F area represents350

area conservation to prevent cells from expanding or shrinking indefinitely and F fric is a friction351

force. The active force from the activator is governed by F act = �M(A)n̂, where n̂ = −∇�∕|∇�| is the352

outward-pointing normal direction of the membrane, andM(A) = A3∕(A3 +A30) where A0 represents353

a threshold value for activation of protrusive force. The membrane tension force is computed using354

the functional derivative Camley et al. (2014) F mem =
�Htension(�)

��
∇�∕�� , with �� = �|∇�|2 and355

Htension(�) =  ∫ ( �
2
|∇�|2 +

G(�)
�

)d2r. (5)

Here, G(�) is a double well potential with minima at � = 1 and � = 0: G(�) = 18�2(1 − �)2. As in our
earlier work Camley et al. (2017) we neglect membrane bending and we have verified that it does
not qualitatively change the results. We implement area conservation as F area = BS (∫ �d2r − S0)n̂
where BS represents the strength of the area conservation and S0 is the prescribed area size
determined by initial cell radius r through S0 = �r2. The friction is F fric = �v so that v is obtained
from the force balance equation: v = (F act + F mem + F area)∕�. Note that the friction coefficient takes
into account the interaction with the substrate, and that fluid drag can be ignored Del Alamo et al.
(2007). The motion of the phase field � is then determined by the advective equation )�∕)t = −v⋅∇�.
Finally, coupling the phase field equations to the reaction-diffusion equations presented in the

main text, we arrive at the full equations:

)(�A)
)t

= DA∇ ⋅ (�∇A) + �[(
kaA2

K2
a + A2

+ b)(At − A) − (d1 + d2R)A + �1(t)], (6)

)(�R)
)t

= DR∇ ⋅ (�∇R) + �[
c2A − c1R

�
+ �2(t)], (7)

�
)�
)t

= �M(A)|∇�| + (∇2� −
G′(�)
�2

) − BS (∫ �d2r − S0)|∇�|. (8)
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Through the coupling of � to the reaction-diffusion equations, all reaction and diffusion processes356

are constrained to be inside the auxiliary field Kockelkoren et al. (2003). The membrane tension357

parameter is similar to the one used in earlier studies Shao et al. (2010, 2012); Camley et al. (2014)358

and taken from Simson et al. (1998). The parameters of the biochemical module are estimated359

from experiments Arai et al. (2010); Gerhardt et al. (2014), such that the minimum wave speed in360

simulations is approximately 0.12�m/s and the wavelength is about 15�m. Note, however, that we361

can rescale time constants to make simulations more efficient. Therefore, these values are obtained362

after increasing � and time by a factor of 2 and 5, respectively.363

Numerical details364

The parameters used for numerical simulations are listed in Table 1. Equations are evolved in a365

region with size of Lx × Ly=50 × 50 �m with discrete grids of n×m=256×256 and periodic boundary366

conditions are used. Eq.8 is discretized using the forward Euler method with )t� = (�(n+1) − �(n))∕Δt.367

Derivatives are calculated using finite difference formulas: )x� = (�i+1,j − �i−1,j)∕(2Δx) and )2x� =368

(�i+1,j + �i−1,j − 2�i,j)∕Δx2, with similar equations for the derivatives in the y-direction. Eq.6&7 are369

discretized using the forward Euler scheme with )t(�A) = �(n)(A(n+1) − A(n))∕Δt + A(n)(�(n+1) − �(n))∕Δt.370

The diffusion terms ∇ ⋅ (�∇A) are also approximated using finite difference. The x-term, for example,371

reads [(�i+1,j + �i,j)(Ai+1,j − Ai,j)∕(2Δx) − (�i,j + �i−1,j)(Ai,j − Ai−1,j)∕(2Δx)]∕Δx. The white noise terms372

are simulated as Wiener processes with � (t)Δt =
√

�ΔtN(0, 1). As initial condition for �, we use a373

disk � = 1
2
[1 + tanh(3(r − r0)∕�)], where r0 is the prescribed radius and A = R = 0. The activator and374

inhibitor concentration outside the boundary is 0. To implement this boundary condition, we solve375

Eq.6&7 only in region �0 away from � = 1∕2 which is � > � = 1∕2 + 1∕2 tanh(−3�0∕�) ≈ 0.0025, and376

leave A = R = 0 outside this region. Here, we have taken �0 = 2�m.377

Equations are parallelized with CUDA and simulated using GPUs. Typical simulations speeds on378

a high-end graphics board are less than one minute for 100s of model time.379

Identification of migration modes380

In our simulations, we track the motion of the center of mass of the cell which results in a cell381

trajectory. Oscillatory cells are defined as cells with a vanishing center of mass speed (see also382

Fig. 2c). To distinguish amoeboid-like from keratocyte-like cells we can use one of two strategies.383

The first one is identical to the one used in the experiments and uses the position of the center384

of mass at discrete time intervals. We then compute the angle between the vector connecting385

consecutive points and an arbitrary fixed axis and compute the standard deviation of this distribu-386

tion. Keratocyte-like cells, which move more persistently and thus have straighter trajectories, will387

have a smaller standard deviation than amoeboid-like cells (Fig. 2b). The result is shown in Fig. 2e388

where we plot the standard deviation for 100 consecutive intervals, separated by 3s as a function of389

protrusion strength (blue curve). Alternatively, taking advantage of the high temporal resolution of390

the computational tracks, we can use the curvature of the cell trajectory to identify the transition391

between amoeboid-like and keratocyte-like cells. This is also shown in Fig. 2e where we plot the392

average curvature ⟨�⟩ = ∫ �(l)dl∕L (red curve) as a function of protrusion strength. Here, �(l) is the393

local curvature, and L is the total length of the trajectory. We can then define keratocyte-like cells394

as those cells with a standard deviation smaller than 2◦ or with an average curvature smaller than395

0.02 �m−1.396

To identify themigrationmode in the experiments we also track the centroid of the cell. However,397

since the temporal resolution in the experiments are much lower than that of our simulations, we398

cannot employ the average curvature identification described above. Instead, we use the angle399

method and compute angles between two successive positions, separated by 30s. The standard400

deviation of this angle is then computed for 5 consecutive pairs and keratocyte-like cells are defined401

by having a standard deviation less than 25◦. To determine whether cells can be considered402

oscillatory we compute the cell area and evaluate three criteria. First, we compute the coefficient of403

variation COV (ratio of the standard deviation and the mean) of the area oscillations (computed404
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using 5 consecutive frames separated by 30 s). Second, we determine the maximum (peaks) and405

minimum values (valleys) in a time trace of the cell area (see Fig. 3e) and quantify the ratio of the406

difference between the average peak and valley and the average peak: P=(<peak>-<valley>)/<peak>.407

Third, we evaluate the total amount of time Ttot an oscillation is present. Oscillatory cells are then408

defined as cells with COV>5%, P>19%, and Ttot>40 min.409

Speed of keratocyte-like cells410

The local cell boundary velocity can be approximated as v = n̂�M(A)∕�. Since, for keratocyte-like411

cells, the front is almost flat (see main text Fig.2), the cell speed can be approximated as v = ��∕�,412

where � is the average ofM(A) across the boundary: � = ∫ �
−�M(A)�dx∕(2�) ≈ 0.55. Thus, the speed413

of keratocyte-like cells only depends on the protrusive force and the friction but not on the tension414

or on the inhibitor timescale. We can verify this in simulations by changing the tension  and the415

inhibitor’s timescale � while keeping other parameters fixed. The results are shown in Fig2–Figure416

Supplement 1 which demonstrates that the cell speed changes little if these parameters are varied.417

Traveling waves418

Our relaxation oscillator system exhibits traveling waves with a minimum speed that depends419

on the timescale of the inhibitor and its diffusion constant. Our model can be written as )tA =420

D∇2A+f (A,R), )tR = D∇2R+g(A,R), where f (A,R) and g(A,R) can be found from Eq.6&7. First we421

consider the case of � → ∞ and DR = 0 so that the inhibitor is uniformly distributed and constant:422

R = R0. The relevant equation now is )tA = D)2xA+ f (A;R0). When R0 is in a proper range, there are423

three steady states A = A1,2,3, with A1 < A2 < A3 and A = A1,3 stable and A = A2 unstable. For a given424

R0, we seek for solutions of wave form A(z) = A(x−ct). The excitable version of this system has been425

extensively studied and for the cubic reaction term k(u − u1)(u2 − u)(u − u3) there is a stable traveling426

wave solution that connects u with u1 and u3 and has a wave speed c =
√

kD∕2(u1 − 2u2 + u3)Murray427

(2002). Likewise, our model )tA = D)2xA + f (A;R0), which has the same structure as the excitable428

system with a cubic reaction equation, has a stable traveling wave with speed c ≈ w(A1 − 2A2 + A3)429

which depends on R0 through A1,2,3. Here, w is a constant that only depends on the diffusion430

coefficient DA and reaction rates (cf.
√

kD∕2 for the cubic reaction equation).431

For non-zero values of � and DR, the relaxation phase, characterized by the accumulation of432

inhibitor, sets in behind the activator’s wave front. From the above analysis, it can be deduced that433

a necessary condition for a stable wave front is a constant profile of the inhibitor R = R0 in the434

width of the front. For DR = 0, this can only be the case when � is large so that the reaction rate of435

the inhibitor is slow compared to the rate of the activator. Thus, there needs to be a separation of436

timescales and the system has to obey relaxation dynamics. Furthermore, for DR > 0, the activator437

wave front is only stable if it can outrun the inhibitor’s spreading speed which is proportional to438

√

DR∕�. Therefore, the traveling wave is only stable if both the reaction and diffusion of the inhibitor439

are slow enough. In other words, stable waves will have a speed that exceeds a minimum value440

which depends both on DR and �. In simulations, we can change cmin by changing the inhibitor’s441

diffusion coefficient DR and the timescale �. As expected, larger DR and smaller � leads to larger442

c
min
, and consequently larger �c,1 (Fig2–Figure Supplement 2a&b).443

The role of tension in morphology444

Tension is important to maintain the unidirectional movement of keratocyte-like cells. In our model,445

at the two lateral ends of the traveling wave the morphology is determined by a balance between446

the protrusive force and the tension which is determined by the local curvature and the parameter447

. When the protrusive force increases, a larger membrane curvature is necessary to balance the448

protrusive force, resulting in a flatter front and a decreased front-back distance. If  is not large449

enough, the traveling wavefront can have a turning instability: the cell will no longer migrate along450

a straight path and will make a turn Camley et al. (2017). An example of this instability and the451

resulting motion is shown in Fig2–Figure Supplement 3 a where we decrease the surface tension452
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by a factor of 2 (from =2pN/�m to =1pN/�m). Similar to Camley et al. (2017), the cell can also be453

destabilized by increasing the diffusion of the activator and inhibitor. An example of a simulation454

showing this can be found in Fig2–Figure Supplement 3 b.455

Parameter variations456

We have examined how the model results change when certain parameters are varied. For example,457

we can extend the (�, r) phase space to larger values of r as shown in Fig2–Figure Supplement 4458

a. For cell sizes that are beyond ones observed in experiments, we find that the critical protrusive459

force �c,2 saturates. For these large values of r, a dominant wave forms at the front of the cell and460

new waves that are generated at the back of the cell are not strong enough to break this dominant461

wave’s persistency. The cell will move persistently in the direction of the dominant wave, with462

smaller waves repeatedly appearing at the back, as shown in the snapshot presented in Fig2–Figure463

Supplement 4 a. For keratocyte-like cells with a single wave, d will saturate to the wavelength464

� ≈13�m, as shown in Fig2–Figure Supplement 4 b. Finally, we have verified that changing the Hill465

coefficient inM(A) does not change the phase diagram and thus the transitions in a qualitative466

fashion. This is shown in Fig2–Figure Supplement 4 c where we plot the boundaries between the467

different migration modes in the phase diagram for three different values of the Hill coefficient.468

Varying area conservation469

Real cells are three-dimensional objects in which the changing of the basal surface area will be470

compensated by the morphological changes away from the substrate. Our model represents the471

cell as a two-dimensional object and therefore includes an area conservation term. Making the472

strength of this area conversation large in simulations allows us to define and sample the (�, r)473

phase space (Fig. 2b). To determine how this area conservation term affects the observed dynamics,474

we reduce the area conservation parameter from SB = 10 to SB = 0.1. As shown in Fig2–Figure475

Supplement 5, all migration modes are still present. For small values of �, cells are oscillatory and,476

compared to large values of SB , exhibit measurable oscillations in cell size (Fig2–Figure Supplement477

5 a-c). Furthermore, increasing the value of the protrusive strengths results in amoeboid-like motion478

while even larger values of � lead to keratocyte-like cells (Fig2–Figure Supplement 5 d).479

Excitable model480

Our biochemical model is based on relaxation oscillation dynamics. However, it is straightforward481

to consider an excitable version of the model. For this, we take c2 = 30, � = 0.1�M2�m2∕s and keep482

all the other parameters same as listed in Table S1. For the excitable version of our biochemical483

module, we find similarmigrationmode transitions as found in themain text as well as a qualitatively484

similar phase diagram (Fig2–Figure Supplement 6 a and b). Specifically, we also find a nonmotile,485

amoeboid-like, and a keratocyte-like mode (Fig2–Figure Supplement 6 a). In the excitable case,486

however, perturbations are required to initiate waves and movement. As a consequence, the487

patterns of activator are more noisy than for the oscillation model and the non-motile cells do not488

exhibit oscillatory dynamics. Finally, the transition between nonmotile cells and amoeboid-like cells489

is also subcritical (Fig2–Figure Supplement 6 c).490

Experiments491

Wild-type AX2 cells were transformed with the plasmid expressing limE-delta-coil-GFP. Cells were492

kept in exponential growth phase in a shaker at 22◦C in HL5 media with hygromycin (50�g/mL). On493

the day before the experiment, cells were diluted to low concentration (1-2×105 cells/mL) to stop494

the exponential growth. After 15h-18h, cell concentration reached 2-5×105 cells/mL and 105 cells495

were plated in a 50mm round chamber with glass bottom (WillCo). After 15min, cells attached to496

the substrate and HL5 was replaced with 7mL DB (5 mM Na2HPO4, 5 mM KH2PO4,200�M CaCl2, 2497

mMMgCl2, pH6.5). Specified amount was diluted in 500�L of DB and added to the sample using a498

pipette at 6h of starvation.499
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Differential interference contrast (DIC) images are taken every 30s in six fields of view across the500

sample using a 10x objective from 5h45 to 6h30 after beginning of starvation. Cell centroids, area,501

minor and major axis are tracked using Slidebook 6 (Intelligent Imaging Innovations). Statistical502

analysis of trajectories is performed in MATLAB (2018a; The Mathworks). Experimental data503

presented before latrunculin B are for cells between 5h45 to 6h of starvation, whereas effect of504

the drug is quantified on cells from 6h15 to 6h30. Speeds are measured using a time interval of505

1min. For each concentration, data are collected on three different days, resulting in N=333 , N=315,506

N=385, N=567, and N=399 for 0, 1, 2, 3, and 4 nM latruculin, respectively. P values are computed507

with the Wilcoxon rank sum test. Fluorescent images (488-nm excitation) are captured with a 63x oil508

objective using a spinning-disk confocal Zeiss Axio Observer inverted microscope equipped with a509

Roper Quantum 512SC cameras.510

Videos511

Video 1: simulation results for r = 8�m and � = 2 pN. Video 2: simulation results for r = 8�m and512

� = 4 pN. Video 3: simulation results for r = 8�m and � = 11 pN. Video 4: experimental results with513

2�M Latrunculin B added at time 1h45min.514
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Parameter Description Value

 Tension 2 pN �m
� Width of phase field 2 �m
BS Cell area conservation strength 10 pN∕�m2

� Friction coefficient 10 pN s∕�m
n Hill coefficient of protrusive force 3

ka Activation rate 10 s−1

Ka Activation threshold 1 �M
b Basal activation rate 0.1 s−1

At Total activator concentration 2 �M
d1 Basal degradation rate 1 s−1

d2 Degradation rate from inhibitor 1 �M−1s−1

c1 Inhibitor degradation coeffecient 1
c2 Inhibitor activation coefficient 15
� Time scale of negative feedback 10 s

DA Activator diffusion coefficient 0.5 �m2∕s
DR Inhibitor diffusion coefficient 0.5 �m2∕s
� Noise intensity 0.01 �M2�m2∕s
Δt Time step 0.001 s

n, m Space grid size 256,256

Lx,y Space size 50,50 �m
Table 1. Model Parameters
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Figure 1. Reaction diffusion model coupled to a mechanical model. (a) Schematic illustration of the

two-dimensional model: a self-activating activator field A, indicated in color, drives the movement of the cell
membrane through protrusive forces that are normal to the membrane (green arrows). The membrane tension

(denoted by brown arrows) is proportional to the local curvature while the cell also experiences a drag force

that is proportional to the speed. One successive wave is generated behind the original one after a distance of

�. The cell’s front-back distance is d, and the cell boundary is pushed outward with speed vb. (b) Nullclines of
the activator (solid line) and inhibitor (dashed line), along with the resulting trajectory in phase space (gray thin

line). The inset shows the oscillations of A and R, normalized by their maximum values Am and Rm.
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Figure 2. Different cell migration modes can be captured in the model by varying the protrusive strength �. (a)
Snapshots of a simulated cell showing (I) an oscillatory cell (� = 2 pN), (II) an amoeboid-like cell (� = 4 pN), and
(III) a keratocyte-like cell (� = 11 pN). All other parameters were assigned the default values and r = 8�m. Here,
the activator concentration is shown using the color scale and the cell membrane is plotted as a red line (scale

bar 5�m). (b) The trajectories of the three cells in (a). (c) The transition from oscillatory cell to amoeboid-like cell,
with speed of the center of mass of a cell as a function of protrusion strength � for r = 8�m. The red curve
represents results from initial conditions where noise is added to a homogeneous A and R field while the blue
curve corresponds to simulations in which the initial activator is asymmetric. Cells become non-motile at a

critical value of protrusion strength, �c,1. (d) Increasing the protrusive force � will result in flatter fronts in
keratocyte-like cells and a decreased front-back distance. The simulations are carried out for fixed cell area S.
(e) The transition from amoeboid-like cell to keratocyte-like cell quantified by either the average curvature along

a trajectory or the standard deviation of the angles of trajectory points as a function of protrusion strength �
(r = 8�m). Cell moves unidirectionally when the protrusion strength � > �c,2. (f) Phase diagram determined by
systematically varying � and the initial radius of the cell, r. Due to strong area conservation, cell area is
determined through S = �r2. (g) The transition line of amoeboid-like cell to keratocyte-like cell for different
parameter values. (h) The speed of the keratocyte-like cell as a function of �∕�. The black line is the predicted
cell speed with vb = ��∕�, where � ≈ 0.55. Symbols represent simulations using different parameter variations:
empty circles, default parameters; triangles, � = 2�0; filled circles,  = 20; squares, � = �0∕2.

Figure 2–Figure supplement 1. Speed of keratocyte-like cells as a function of the surface tension and

timescale of the inhibitor

Figure 2–Figure supplement 2. Critical protrustion strength �c,1 as a function of the inhibitor’s diffusion

constant and time scale.

Figure 2–Figure supplement 3. Effects of tension

Figure 2–Figure supplement 4. Parameter variations in the model

Figure 2–Figure supplement 5. Oscillatory cells for strong and weak area conservation

Figure 2–Figure supplement 6. Excitable dynamics can reproduce identical qualitative results
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Figure 3. Experiments reveal different migration modes in Dictyostelium cells. (a) Snapshot of starved

Dictyostelium cells before (left) and after (right) exposure to latrunculin B. Amoeboid-like cells are outlined in

blue while keratocyte-like cells are outlined in red (scale bar: 50 �m). The panels on the right show high
magnification views of amoeboid-like (top two) and keratocyte-like cells in which the freshly polymerized actin is

visualized with limE-GFP (scale bar: 5 �m). (b) Percentage of keratocyte-like cells as a function of time for
different concentrations of latrunculin B (introduced at 6 h, dashed line). Inset shows the ratio of keratocyte-like

to all cells as a function of the latrunculin concentration for three repeats. (c) The cell area size of keratocyte-like

cells before and after latrunculin exposure as a function of concentration. (d) The speed of keratocyte-like cells

before and after latrunculin exposure as a function of concentration. (e) Basal cell area as a function of time for

a cell that transitioned from amoeboid-like to oscillatory. Insets show snapshots of the cell at different time

points (scale bar: 5 �m). (f) Percentage of cells in the keratocyte-like, amoeboid-like, and oscillatory mode of
migration in the phase space spanned by cell area and latrunculin concentration. Percentage for each mode is

visualized using the color bars. The number of cells for each data point varies between 7 and >1,000 and white
corresponds to a data point with fewer than 7 total cells.

Figure 3–Figure supplement 1. The speed of amoeboid and keratocyte-like cells as a function of latrunculin

concentration for different cell areas.

Figure 3–Figure supplement 2. The average period and coefficient of variation for area oscillations in oscillating

cells after the exposure to latrunculin.
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Figure 2–Figure supplement 1. Speed of keratocyte-like cells as a function of the surface tension

(a) and the timescale of the inhibitor (b). Parameters are as in Table S1 with r = 8�m.
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Figure 2–Figure supplement 2. (a) The critical value �c,1 of protrusion strength as a function of
inhibitor’s diffusion constant DR, and (b), the timescale of the inhibitor �, rescaled by the default
value �0 = 10s. Remaining parameters are as in Table S1 with r = 8�m.
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Figure 2–Figure supplement 3. Snapshot (bottom) and corresponding trajectory (top) of a cell

that undergoes a turning instability. (a) Upon the reduction of surface tension from =2pN/�m
to =1pN/�m. Parameters are taken from Table S1 with r = 6�m. (b) As in (a), but now after an
increase in DA and DR to DA = DR=2 �m2/s and r = 8�m.
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Figure 2–Figure supplement 4. Parameter variations in the model. (a) Phase space extended to

maximum cell area ∼ 450�m2, corresponding to r = 12�m. Green: oscillatory cell; blue: amoeboid-
like cell; red: keratocyte-like cell. The dashed white line corresponding to the separation line d = �
above which the keratocyte-like cells exhibit a single wave and below which keratocyte-like cells

move unidirectional but with small waves repeatedly appearing at the back of the cell. (b) The

keratocyte-like cell’s front-back distance d along the white dashed line. The saturation value is the
wavelength � ≈ 13�m. (c) Lines corresponding to �c,1 and �c,2 in the (�, S) phase space for different
values of the Hill coefficient n. For all values of n used in the simulations, �c,1 is independent of the
cell radius r while �c,2 increases with r, and thus S, and eventually saturates.
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Figure 2–Figure supplement 5. Oscillatory cells for strong (a, BS = 10) and weak (b, BS = 0.1) area
conservation. Parameters are as in Table 1 with � = 2.5 and r = 8�m. (c) Cell size (blue) and average
activator concentration (red) as a function of time for the oscillatory cell in panel b. (d) Left, example

of amoeboid-like cell for weak area conservation (BS = 0.1); right, example of keratocyte-like cell for
weak area conservation (BS = 0.1). The colors represent the activator concentration, as indicated by
the color bar. Scalebar=5 �m.
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Figure 2–Figure supplement 6. Excitable dynamics can reproduce identical qualitative results. (a)

Snapshots of the three different migration modes for an excitable version of the model. Left panel

shows an nonmotile cell (� = 2), middle panel shows an amoeboid-like cell (� = 4), and the right
panel displays a keratocyte-like cell (� = 10). (b) Speed of the center of mass as a function of critical
protrusion strength. As for the relaxation oscillator model (Fig. 2c), the bifurcation is subcritical.

(c) Phase diagram (�, S) space with green corresponding to nonmotile cells, blue representing
amoeboid-like cells, and red corresponding to keratocyte-like cells. Scalebar=5 �m.
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Figure 3–Figure supplement 1. Cell speed decreases as the latrunculin concentration increases.

Cell areas were grouped in bins of 40 �m2. Error bars represent the standard error of the mean.
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Figure 3–Figure supplement 2. The average period and coefficient of variation COV (ratio of the

standard deviation and the mean) for area oscillations in oscillating cells after the exposure to 4�M
latrunculin (N=23).
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